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We study the continuous absorbing-state phase transition in the one-dimensional pair contact process with
diffusion �PCPD�. In previous studies �Dickman and de Menezes, Phys. Rev. E 66, 045101�R� �2002��, the
critical point moment ratios of the order parameter showed anomalous behavior, growing with system size
rather than taking universal values, as expected. Using the quasistationary simulation method we determine the
moments of the order parameter up to fourth order at the critical point, in systems of up to 40 960 sites. Due
to strong finite-size effects, the ratios converge only for large system sizes. Moment ratios and associated
order-parameter histograms are compared with those of directed percolation. We also report an improved
estimate �pc=0.077 092�1�� for the location of the critical point in the nondiffusive pair contact process.
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I. INTRODUCTION

The pair contact process �PCP� �1� is a nonequilibrium
stochastic model that exhibits a phase transition to an absorb-
ing state �2–4�. Several studies have established that the PCP
belongs to the robust directed percolation �DP� universality
class �5�. In contrast with the contact process, which has the
vacuum as its unique absorbing state, the PCP exhibits an
infinite number of absorbing configurations, since both cre-
ation and annihilation require a nearest-neighbor pair of par-
ticles. Allowing particles in the PCP to hop on the lattice, one
obtains the so-called pair contact process with diffusion
�PCPD�. Here there are only two absorbing states: the
vacuum, and the subspace with only a single particle.

While a version of the pair contact process with diffusion
was proposed by Grassberger in 1982 �6�, current interest in
the problem follows its rediscovery by Howard and Täuber
�7� who questioned the validity of the Langevin description
for this process. The first numerical studies of the PCPD �8�
suggested that critical the PCPD would fall in the “parity
conserving” �PC� class, but increasing computational effort
revealed that this was not the case, and that the critical be-
havior of the model was masked by huge corrections �9,10�.
Since then, diverse scenarios, some of them contradictory,
have been proposed in order to clarify this question. At
present there are two principal schools of thought: in one, the
PCPD belongs to a universality class distinct from DP, with a
unique set of critical exponents, or possibly continuously
varying exponents due to a marginal perturbation �11–13�.
The opposing school holds that the PCPD should be attracted
to a DP fixed point after a huge crossover time �14,15�. A
recent review on these and other scenarios can be found in
Ref. �16�. In this work we study the PCPD via quasistation-
ary �QS� simulations �17�, focussing on the order parameter
and its moments.

The balance of this paper is organized as follows: In the
next section we review the definition of the model and detail

our simulation method. In Sec. III we present our results, and
Sec. IV is devoted to discussion and conclusions.

II. MODEL AND SIMULATION METHOD

The PCP is defined on a lattice, with each site either oc-
cupied or vacant. All changes of configuration involve a pair
of particles occupying nearest-neighbor sites, called a pair in
what follows. A pair annihilates itself at a rate of p, and with
rate 1− p creates a new particle at a randomly chosen site
neighboring the pair, if this site is vacant. In the PCPD, in
addition to the creation and annihilation processes already
mentioned, each particle attempts to hop, at rate D, to a
randomly chosen nearest-neighbor �NN� site; the move is
accepted if the target site is vacant. The PCPD exhibits a
continuous phase transition to the absorbing state, at a criti-
cal annihilation rate pc�D�. Several variants of the model,
differing in how each process �creation, annihilation or dif-
fusion� is selected, have been studied in the literature �16�.
Here we use the implementation of Ref. �11�. The model is
defined on a ring of L sites. We maintain a list of pairs to
improve efficiency. At each step of the evolution we first
choose between diffusion �with probability D� and reaction
�with probability 1−D�. In a reaction step, we select a pair at
random, and choose between creation and annihilation with
probabilities p and 1− p, respectively. If we choose diffusion,
a particle is selected at random; it attempts to hop to one of
its neighbor sites �if the latter is vacant�. The time increment
associated with each step is �t=1/ �Npair+DNpart�, where
Npair and Npart are the number of pairs and particles in the
lattice at time t. Thus each lattice site is effectively visited
once �on average� per time unit. The most obvious definition
of the order parameter in the PCPD is the pair density �2, the
number of pairs per site. Since creation �and destruction� of
particles requires pairs, one might expect the particle density
�1 to scale in a similar manner. �We in fact confirm numeri-
cally that �1 and �2 exhibit similar scaling properties.�

In the studies reported here we sample the quasistationary
�QS� distribution of the process �that is, conditioned on sur-
vival�, which is very useful in the study of processes with an
absorbing state. �In fact, conventional simulations of “sta-
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tionary” properties of lattice models with an absorbing state
actually study the quasistationary regime, given that the only
true stationary state for a finite system is the absorbing one�.
We employ a recently devised simulation method that yields
quasistationary properties directly �17�. This is done by
maintaining, and gradually updating, a set of configurations
visited during the evolution; when a transition to the absorb-
ing state is imminent the system is instead placed in one of
the saved configurations. Otherwise the evolution is exactly
that of a conventional simulation. �The updating of the set of
saved configurations is done by replacing, at each time step,
with a small probability prep one of the saved configurations
with the current one.�

The above scheme was shown �17� to yield precise re-
sults, in accord with the exact QS distribution for the contact
process on a complete graph, and with conventional simula-
tions of the same model on a ring �17�. The scheme has also
been shown to yield results that agree, to within uncertainty,
with the corresponding results of conventional simulations
for a sandpile model �18�. The advantage of the method is
that a realization of the process can be run to arbitrarily long
times. Thus, whereas in conventional simulations a large
number of realizations must be performed to have a decent
sampling of the �quasi�stationary state, here every realization
provides useful information, once the initial transient has re-
laxed. This leads to an order of magnitude improvement in
efficiency, in the critical region. For further details on the
method see Ref. �17�.

The PCPD dynamics is characterized by �1� single-
particle diffusion and �2� reactions involving a pair, motivat-
ing us to ignore the “purely diffusive” subspace. This means
that we modify slightly the dynamics of the model, restrict-
ing it to the subspace with at least one pair, which we call
the reactive subspace. The motivations for studying the
modified process are as follows: �1� In Ref. �11� excluding
the subspace without pairs yielded better behaved moment
ratios; �2� eliminating the large fraction of time expended on
the nonreactive intervals yields a major improvement in ef-
ficiency. We may further justify our choice by noting that any
scaling properties necessarily involve reactions, that is, the
existence of pairs.

We impose this restriction as follows. The initial configu-
ration �all sites occupied� has a large number of pairs. Ap-
plying the QS simulation method, we accumulate a list of
configurations during the evolution. Then, whenever a visit
to a configuration �absorbing or not� without pairs is immi-
nent, the system is instead placed in a configuration selected
randomly from the list. In other words, the QS method, pre-
viously used to sample quasistationary properties, is used
here to restrict the dynamics to the subspace of interest. A
subtle difference between the two applications of the method
is that, while in the usual QS simulations �17� the method
provides a just sampling of properties conditioned on sur-
vival, in the present case we eliminate certain nonabsorbing
configurations �and the histories involving them� as well. For
the reasons given above, we do not expect this to color our
results for large system sizes.

III. SIMULATION RESULTS

We performed extensive simulations of the PCPD on
rings of L=1280,2560, . . . ,40 960 sites, using the QS

method restricted to the reactive subspace. Each realization
of the process is initialized with all sites occupied, and runs
for 109 time steps. Averages are taken in the QS regime, after
discarding an initial transient which depends on the system
size. In practice we accumulate histograms of the time dur-
ing which the system has exactly 1, 2 , . . .n , . . . pairs, and
similarly for particles. The histograms are used to evaluate
moments; we denote by mj;1 the jth moment of the particle
number probability distribution; mj,2 denotes the correspond-
ing moment of the pair number distribution. �Thus the order
parameter �2 could also be denoted m1;2.� The QS lifetime �
is taken as the mean time between attempts to leave the
reactive subspace.

The number of saved configurations ranges from 10 000,
for L=1280, to 500 for L=40 960. Values of prep range from
10−4 to 2�10−6. �During the relaxation phase we use a prep
10 times larger, to eliminate the influence of the initial con-
figuration.� The results of QS simulations were found to
agree with results of conventional simulations �11�, for sys-
tem sizes L=80,160, . . . ,1280. We study three diffusion
rates, D=0.1, 0.5, and 0.85, as in Ref. �11�. For comparison,
we also study the �nondiffusive� PCP, whose scaling proper-
ties are known to be those of directed percolation. The QS
results for the D=0 case confirm DP behavior in the nondif-
fusive PCP, as can be verified from the values of the expo-
nents and moment ratios listed in Tables I and II. Further, we
improved the estimate for the critical point of the PCP, ob-
taining pc=0.077 092�1�. �This is consistent with the previ-
ous best estimate, pc=0.077 090�5�, of Ref. �19�.�

The first step in analyzing our results is to determine, for
each D value studied, the critical annihilation probability
p�D�. We use the following criteria for criticality: power-law
dependence of �1� �1 and �2 and �2� � on system size L �i.e.,
the usual finite-size scaling relations ��L−�/�� and ��Lz�;
�3� constancy of the moment ratio r211;2�m2;2 /m1;2

2 with
system size. The three criteria were found to be mutually
consistent within the error margins. Figure 1 shows the data
for �2 for D=0.5; the QS order parameter for various p val-
ues near pc is plotted versus L on log scales. The data for the
four largest sizes are well fit by a straight line of slope
−� /��=−0.385. Plotting L�/���2 �see inset�, allows us to
eliminate as off-critical p values for which the plot shows a
significant curvature, leading to the estimate pc
=0.120 353�2�. A similar analysis of the particle density �1

yields pc=0.120 357�5� while that for the lifetime � gives
0.120 352�3�, leading to the overall best estimate pc
=0.120 354�3� for D=0.5. For all three diffusion rates stud-

TABLE I. Critical exponent values for the PCP, PCPD, and DP.
DP values from Ref. �23�.

D pc � /�� z

0 �PCP� 0.077092�1� 0.2519�3� 1.584�7�
0.1 0.106405�15� 0.505�10� 2.08�15�
0.5 0.120354�3� 0.385�11� 2.04�5�
0.85 0.129925�8� 0.386�5� 1.88�12�
DP 0.25208�5� 1.5807�1�
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ied, the values of � /�� from analysis of �1 and �2 agree to
within uncertainty. �For D=0.5, for example, we find � /��

=0.378�11� and 0.385�11�, respectively, using the particle
and pair densities.�

Analysis of the moment ratio is also useful in setting lim-
its on pc: As can be seen in Fig. 2, this quantity appears to
grow with system size for p� pc, and vice versa. For D
=0.85, for example, we find pc=0.129 92�1� from analysis of
�2, pc=0.129 93�1� from analysis of �, and pc

=0.129 925�8� from analysis of the moment ratio r211;2. �For
D=0.5, on the other hand, the moment ratio data do not yield
an estimate of precision comparable to that furnished by �1,
�2, and �.�

As a check on our procedure for determining pc, we also
performed, for D=0.85 initial decay studies �20,21�. In these
studies the order parameter �2 is followed as a function of
time, starting, as in the other studies, with all sites occupied.
�In this case the system does not leave the reactive subspace
on the time scale of the simulation so the QS procedure is
not needed.� Here the expected behavior is �2� t−	. Using
deviations from the power law to identify off-critical values,
a study of systems of 106 sites, to a maximum time of 108,

yields pc=0.129 915�15�, fully consistent with the QS re-
sults. Analysis of the data for t
5�105 furnishes 	
=0.19�1�, consistent with previously reported results �13,20�.

Our present estimates for pc are slightly lower than those
reported in Ref. �11�, a difference of less than 0.1%. These
differences highlight the strong finite-size corrections affect-
ing the PCPD �in Ref. �11� system sizes range from 80 to
1280�, and appear in other absorbing state problems, such as
the restricted sandpile model �18�.

Using our results for the three largest system sizes �L
=10 240, 20 480, and 40 960� we obtain estimates for the
critical exponent ratios � /�� and z=�� /��. These are re-
ported in Table I. The chief contribution to the uncertainties
in the exponent ratios comes from the uncertainty in pc. We
note that although the exponent z appears to depend system-
atically on diffusion rate D, our results are in fact consistent
with z=2 in all cases. By contrast, the value of � /�� for
D=0.1 is significantly different than that found for D=0.5
and 0.85. The latter value �� /��=0.385�11�� does not yield
a good fit to the data for D=0.1 even if a logarithmic cor-
rection term is introduced in the fitting function.

In nonequilibrium statistical physics, obtaining values for
moment ratios has proved an efficient method for identifying
the universality class �19�. Here we analyze, in addition to
r211;2 mentioned above, the ratios

TABLE II. Critical moment ratio values for the PCP, PCPD, and the DP, parity-conserving �PC�, and
conserved-DP �CDP� universality classes.

D r211;2 r312;2 r422;2 K4 /K2
2 Reference

0 �PCP� 1.1738�2� 1.303�3� 1.558�2� −0.493�3� �19�
0.1 1.140�15� 1.27�2� 1.55�3� 0.1�2� This work

0.5 1.166�8� 1.310�15� 1.61�2� 0.0�1� This work

0.85 1.170�6� 1.31�1� 1.61�4� −0.1�1� This work

DP 1.1736�2� 1.301�3� 1.554�2� −0.505�3� �19�
PC 1.3340�4� �11�

CDP 1.142�8� �18�

FIG. 1. �Color online� Quasistationary order parameter versus
system size for p=0.120 345, p=0.120 350, p=0.120 355 and p
=0.120 360, from top to bottom. D=0.5. Inset, ln L�/��� versus ln L
for the same values of p.

FIG. 2. Quasistationary moment ratio r211;2 versus system size
for p=0.129 90, p=0.129 93, and p=0.129 95, from top to bottom
D=0.85.
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r312;2 �
m3;2

m2;2m1;2
�1�

and

r422;2 �
m4;2

m2;2
2 �2�

and the corresponding ratios for particles. Scaling arguments
imply that such ratios assume universal values at the critical
point, as has been amply verified in equilibrium, and for
models with an absorbing state such as the contact process
and the PCP �19�. Analysis of such ratios is of particular
interest in the present context, given the perplexing result of
Ref. �11�, namely, apparently unlimited growth in r211;2 with
increasing system size, suggesting that the PCPD does not
follow the usual scaling behavior observed at absorbing-state
phase transitions. The present large-scale simulations show
that the PCPD moment ratios do in fact exhibit the expected
behavior.

Figure 3 shows the moment ratios for pairs and particles
in the critical PCPD, with D=0.5 and the PCP. On the basis
of these data we estimate limL→� r211;2=1.166�8� for the
PCPD with D=0.5. While the results for r211;2 appear to
converge for the system sizes studied, the data for the par-
ticle moment ratio r211;1 continue to grow with system size
and cannot be extrapolated to the infinite-size limit. �We note
in passing that the values for particles and pairs suggest that
the two ratios become equal at a system size on the order of
5�105, for D=0.5. Since universality implies similar scaling
of particle and pair densities at the critical point, we may
take this as an order of magnitude estimate for the system
size at which corrections to scaling are finally superseded.
The moment ratio data for D=0.85 are consistent with this
estimate, while those for D=0.1 suggest convergence only at
even larger sizes, on the order of L�107.� Table II lists es-
timates of the limiting �L→�� moment ratios for the PCPD
and some other known universality classes. The ratios for
D
0.5 are rather similar to those for directed percolation.

The cumulant ratio K4 /K2
2 �here Kj denotes the jth cumulant

of the order parameter probability distribution� is not in good
accord with the DP value, although the estimates for the
PCPD are rather imprecise.

Another quantity that is useful for determining the univer-
sality class is the scaled order parameter histogram, defined
as p*�n*�= n̄p�n�, where n denotes the number of pairs and n̄
its mean value. �Here n*�n / n̄.� Figure 4 compares the
scaled histograms for the PCPD with D=0.1, 0.5, and 0.85.
The latter two are quite similar, while the curve for low
diffusion rate has a somewhat narrower peak. In the inset of
Fig. 4 we compare the scaled histogram for the PCPD with
D=0.5 to that of the critical contact process and PCP. While
the CP and PCP have virtually identical histograms, it is
clear that even for the largest sizes studied the PCPD histo-
gram is very different. �A striking difference between the
PCPD on the one hand and CP/PCP on the other is the be-
havior near n*=0: in the latter case the probability increases
linearly with n, while former exhibits a distinctly parabolic
shape. The parabolic form is not an artefact of the QS simu-
lation method, as it is already observed in Ref. �11�, using
conventional simulation.�

In the case of D=0.85, we accumulated data for several
values of the annihilation rate p in the vicinity of pc. This
permits us to estimate the correlation length exponent ��,
using the finite-size scaling relation

m��,L� � Fm�L1/���� , �3�

where �= p− pc and Fm is a scaling function. This leads to

FIG. 3. Moment ratios r211;2 �pairs�, �upper set�, and r211;1 �par-
ticles�, �lower set� versus ln L for p=0.120 354 and D=0.5. Dashed
line, moment ratio r211;2 for the critical PCP.

FIG. 4. �Color online� Scaled histograms for the critical PCPD
with D=0.1, 0.5, and 0.85 �from top to bottom�. Inset, scaled his-
tograms for the critical PCPD �D=0.5, L=10 240 and 20 480�, the
critical CP �same sizes� and the critical PCP �L=10 240�.
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� �m

�p
�

pc

� L1/��. �4�

The data of Fig. 5 yield the estimate ��=1.09�1�, confirming
the results of Ref. �11�.

IV. DISCUSSION

We perform large-scale simulations of the pair contact
process with diffusion, and find that ratios of various mo-
ments of the order parameter approach finite limiting values
for large system sizes, allowing us to present the first nu-
merical estimates of such ratios for this model. This resolves
the apparent anomaly reported in �11�, of a moment ratio
growing without limit.

Two basic questions prominent in recent discussions of
the PCPD are �1� Does the model exhibit continuously vari-
able critical exponents, or a unique set, independent of dif-
fusion rate D? �2� In the latter case, are the exponents those
of directed percolation? Despite the large computational ef-
fort, we are unable to answer these questions definitively.
Our results nevertheless provide some clues. With regard to
the first question, the results reported in Tables I and II show
very good agreement for the two larger diffusion rates stud-
ied �D=0.5 and 0.85�, but those for D=0.1 are quite differ-
ent. Our values for the critical exponents are consistent with
earlier studies ��11,12� for low D and �11,22� for high D�.

For low diffusion rate �D=0.1� we find evidence of stron-
ger corrections to scaling, and/or a slower rate of conver-
gence with increasing L, as noted above in the analysis of the
moment ratios. Our results of z=2.08�15� and � /��

=0.505�10� are consistent with previous results for low-
diffusion rate �11,12�. While this argues in favor of nonuni-
versal behavior, we cannot rule out the possibility of a
unique set of exponents, as suggested, for example, by Ódor

�22�, who asserted that, including a logarithmic correction,
the same value for � /�� holds for both high and low diffu-
sion rates. �We note, however, that we were unable to fit all
the data using the same value for � /��, even including a
logarithmic correction.� In our opinion, it is still unclear if
the observed difference in the exponents and moment ratios
for D=0.1, as compared with larger diffusion rates, is due to
corrections to scaling. Such corrections would have to be
exceptionally large to account for the observed differences,
and must exhibit a rather irregular behavior, given the close
agreement in the results for D=0.5 and 0.85. An equally if
not more natural interpretation is that the critical exponents
and moment ratios really do depend on D.

If we accept, provisionally, that the PCPD critical proper-
ties are independent of D �with huge corrections to scaling
for small diffusion rates�, it is still not obvious that these
properties are characteristic of the DP universality class. The
values for � /�� and z are quite far from those of DP, even
for larger diffusion rates, where corrections to scaling appear
to be less severe. It is true that our estimates for �� �for D
=0.85�, and for the moment ratios �for both D=0.5 and 0.85�
are close to the DP values, but the qualitatively different
form of the order parameter histograms again prevents iden-
tification of the PCPD as belonging to the DP universality
class, even for higher diffusion rates. Thus our results tend to
support the conclusion of Ref. �21�, that PCPD scaling is
distinct from that of DP.

Large-scale studies of time-dependent behavior �20� sug-
gested a value for the initial decay critical exponent 	 differ-
ent from that of DP. A subsequent study �15� led to the sug-
gestion that apparent values of critical exponents vary as one
increases the simulation time and system size, reflecting
strong corrections to scaling, and that observed exponent val-
ues be interpreted as upper limits on the true values. The
results of the quasistationary simulations are not affected by
finite-time corrections, although finite size effects are still
present.

In summary, we have applied the quasistationary simula-
tion method to the pair contact process with diffusion, re-
stricted to the subspace with at least one pair. Our results
indicate that the anomalous behavior of the critical order-
parameter moment ratios does not persist for large systems.
Restricting the dynamics to the reactive sector, these ratios
appear to converge to finite values, as expected. Taken at
face value our results imply a variation of scaling properties
with diffusion rate, but the opposite interpretation is tenable
if one invokes strong corrections to scaling for small D. Re-
gardless of whether or not the critical exponents vary with D,
it seems premature to conclude that the PCPD will eventu-
ally cross over to the DP class.
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FIG. 5. Quasistationary moment ratio r211;2 versus p for system
sizes L=1280, L=2560¯L=20 480 and D=0.85. Inset, ln �m /�p
versus ln L at criticality.
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